Search results

1 – 3 of 3
Article
Publication date: 14 March 2023

Roosefert Mohan, J. Preetha Roselyn and R. Annie Uthra

The artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the…

Abstract

Purpose

The artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the breakdown in advance to eliminate breakdown.

Design/methodology/approach

Meeting the customer requirement as per the delivery schedule with the existing resources are always a big challenge in industries. Any catastrophic breakdown in the equipment leads to increase in production loss, damage to machines, repair cost, time and affects delivery. If these breakdowns are predicted in advance, the breakdown can be addressed before its occurrence and the demand supply chain can be met. TPM is one of the essential operational excellence tool used in industries to utilize the existing resources of a plant in a optimal way. The conventional time based maintenance (TBM) and CBM approach of TPM in Industry 3.0 is time consuming and not accurate enough to achieve zero down time.

Findings

The proposed AI and IIoT based TPM is achieved in a digitalized data oriented platform to monitor and control the health status of the machine which may reduce the catastrophic breakdown by 95% and also improves the quality rate and machine performance rate. Based on the identified key signature parameters related to major breakdown are measured using the sensors, digitalised by programmable logic controller (PLC) and monitored by supervisory control and data acquisition (SCADA) and predicted in server or cloud.

Originality/value

Long short term memory based deep learning network was developed as a regression forecasting model to predict the remaining useful life RUL of the part or assembly and based on the predictions, corrective action has been implemented before the occurrence of breakdown. The reliability and consistency of the proposed approach are validated and horizontally deployed in similar machines to achieve zero downtime.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 August 2021

Zehra Canan Araci, Ahmed Al-Ashaab and Cesar Garcia Almeida

This paper aims to present a process to generate physics-based trade-off curves (ToCs) to facilitate lean product development processes by enabling two key activities of set-based…

Abstract

Purpose

This paper aims to present a process to generate physics-based trade-off curves (ToCs) to facilitate lean product development processes by enabling two key activities of set-based concurrent engineering (SBCE) process model that are comparing alternative design solutions and narrowing down the design set. The developed process of generating physics-based ToCs has been demonstrated via an industrial case study which is a research project.

Design/methodology/approach

The adapted research approach for this paper consists of three phases: a review of the related literature, developing the process of generating physics-based ToCs in the concept of lean product development, implementing the developed process in an industrial case study for validation through the SBCE process model.

Findings

Findings of this application showed that physics-based ToC is an effective tool to enable SBCE activities, as well as to save time and provide the required knowledge environment for the designers to support their decision-making.

Practical implications

Authors expect that this paper will guide companies, which are implementing SBCE processes throughout their lean product development journey. Physics-based ToCs will facilitate accurate decision-making in comparing and narrowing down the design-set through the provision of the right knowledge environment.

Originality/value

SBCE is a useful approach to develop a new product. It is essential to provide the right knowledge environment in a quick and visual manner which has been addressed by demonstrating physics knowledge in ToCs. Therefore, a systematic process has been developed and presented in this paper. The research found that physics-based ToCs could help to identify different physics characteristics of the product in the form of design parameters and visualise in a single graph for all stakeholders to understand without a need for an extensive engineering background and for designers to make a decision faster.

Article
Publication date: 18 April 2024

Ramads Thekkoote

This paper uses the complex proportionality assessment (COPRAS) method to examine the driving factors of Industry 4.0 (I4) technologies for lean implementation in small and…

Abstract

Purpose

This paper uses the complex proportionality assessment (COPRAS) method to examine the driving factors of Industry 4.0 (I4) technologies for lean implementation in small and medium-sized enterprises (SMEs).

Design/methodology/approach

Adopting I4 technology is imperative for SMEs seeking to maintain competitiveness within the manufacturing sector. A thorough understanding of the driving factors involved is required to support the implementation of I4. For this objective, the multi-criteria decision-making (MCDM) tool COPRAS was used to efficiently analyze and rank these driving elements based on their importance. These factors can help small and medium-sized firms (SMEs) prioritize their efforts and investments in I4 technologies for lean implementation.

Findings

This study evaluates and prioritizes the nine I4 factors according to the perceptions of SMEs. The ranking offers significant insights into the factors SMEs consider more accessible and effective when adopting I4 technologies.

Originality/value

The author's original contribution is to examine I4 driving factors for lean implementation in SMEs using COPRAS.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

1 – 3 of 3